Abstract
We solve a general class of dynamic rational-inattention problems in which an agent repeatedly acquires costly information about an evolving state and selects actions. The solution resembles the choice rule in a dynamic logit model, but it is biased towards an optimal default rule that does not depend on the realized state. We apply the general solution to the study of (i) the sunk-cost fallacy; (ii) inertia in actions leading to lagged adjustments to shocks; and (iii) the tradeoff between accuracy and delay in decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.