Abstract

A rational enhancement of kinetic resolution process for producing (S)-N-(2-ethyl-6-methylphenyl) alanine from racemic methyl ester using lipase B from Candida antarctica (CalB) was investigated. With the benefit results that lipase CalB-catalyzed reactions can be effectively regulated using amino acids (such as histidine and lysine) as additives, CalBs modified (mCalBs) by n-histidines at the N terminal and n-lysines at the C terminal were constructed and expressed. The results show that both soluble and precipitated mCalBs can effectively catalyze the hydrolysis reaction without adding any extra additives. The enantioselective ratio (E value) of soluble and precipitated mCalBs could be improved from 12.1 to 20.3, which were higher than that (E value was only 10.2) of commercial Novozym 435 (immobilized CalB). The study indicated that the amino acid-rich molecules introduced on lipase CalB can produce positive effects on enantioselectivity of enzyme. It provides unusual ideas for reasonable regulation of enzyme-catalyzed reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.