Abstract
AbstractTo enhance the performance of dimeric acceptors (DMAs) based organic solar cells (OSCs), two new DMAs, designated as DC9‐HD and DYSe‐3, are rationally developed and employed to fabricate ternary OSCs. The substitution of the sulfur atom on the outer ring of the fused‐ring core of DC9‐HD with a selenium atom resultes in the red‐shifted DYSe‐3. Despite these minor differences, DC9‐HD and DYSe‐3 possess nearly identical conjugated skeletons, which contribute to their similar packing motifs and crystallinities, ultimately enabling a high degree of miscibility between two DMAs. Upon incorporating DYSe‐3 into the host PM6:DC9‐HD binary blend, fibril‐like morphologies featured with diameters of ≈16.9 nm and reduced charge recombination are observed in the PM6:DC9‐HD:DYSe‐3 ternary blend. More importantly, owing to their long exciton diffusion lengths and low voltage losses, a remarkable power conversion efficiency of 19.4% is achieved for the ternary OSCs, alongside a delicate balance between open‐circuit voltage and short‐circuit current density. This super result is comparable to the best performance of oligomer acceptor based OSCs reported to date. Furthermore, the proposed ternary strategy, which combines one polymer donor and two well‐compatible DMAs, not only retains the advantages of DMAs but also offers a streamlined approach for fabricating high‐performance ternary OSCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.