Abstract

The development of nonflammable electrolytes is critical for breaking the trade-off between the safety and energy density in Li-ion batteries (LIBs). Here, a rational design strategy of temperature-responsive nonflammable electrolytes (TRNEs) is proposed which are capable to prevent the heat accumulation and extinguish the fire efficiently during thermal runaway. Compared to the conventional phosphate- or halogen-based flame retardants, the TRNE based on low-cost and multifunctional methylurea (MU) was demonstrated with the lowest volatility (11.6 % weight loss) below 250 °C, and the highest efficacy to extinguish the fire at >210.4 °C through heat absorption, inert gases generation and char layer formation. In addition, the developed MU-based TRNEs enable higher stability and rate capability of LIBs compared to various nonflammable electrolytes. A Li||LiFePO4 (LFP) cell employing MU-based TRNE achieved higher stability (94.9 % capacity retention for 1500 cycles) than commercial electrolyte. A Ni-rich Li||LiNi0.8Mn0.1Co0.1O2 (NMC811) system was demonstrated with superior rate capability and high stability for 700 cycles (2.72 months) with the capacity retention of 89.9 %. Combining low cost and volatility, as well as high stability, rate capability and fire extinguishing efficacy, we demonstrate a promising design strategy to improve the battery safety for high-energy-density LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.