Abstract
A rapid prediction of the dielectric constants from a wide range of organic compounds is of paramount importance given the pressing need to find alternatives to SF6, one of the seven greenhouse gases. However, the availability of a universally applicable equation for predicting dielectric constants remains limited. This study endeavors to systematically develop a universal equation for predicting the dielectric constants of gaseous organic molecules in a systematic manner. The reliability of these newly developed equational protocols is evaluated through both quantitative (i.e., root-mean-squared deviation) and qualitative (i.e., Spearman's rank correlation coefficient) analyses. Equational optimization of the traditionally unreliable Clausius-Mossotti equation highlights the critical role of selecting a suitable variable to be incorporated into an adapted Clausius-Mossotti equation, ultimately enhancing the predictive accuracy. Furthermore, it is revealed that the nature of the chosen variable has a more significant impact on prediction accuracy than the quantity of variables introduced. These findings shed light on the ongoing efforts of developing a dependable protocol for predicting not only dielectric constants but also other vital insulating properties, such as dielectric strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.