Abstract

Achieving strategies to finely regulate with biological inputs the formation and functionality of DNA-based nanoarchitectures and nanomachines is essential toward a full realization of the potential of DNA nanotechnology. Here we demonstrate an unprecedented, rational approach to achieve control, through a simple change of the solution's pH, over an important class of DNA association-based reactions. To do so we took advantage of the pH dependence of parallel Hoogsteen interactions and rationally designed two triplex-based DNA strand displacement strategies that can be triggered and finely regulated at either basic or acidic pHs. Because pH change represents an important input both in healthy and pathological biological pathways, our findings can have implication for the development of DNA nanostructures whose assembly and functionality can be triggered in the presence of specific biological targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.