Abstract

Biphasic or multiphase heterostructures have promising futures in advanced electrode materials for energy-related applications because of their desirable synergistic effects. Here we prepared a rational NiO/NiSe2@C heterostructure microsphere through carbonization, selenization, and oxidation using Ni-MOF as a precursor. Electrochemical studies were conducted to examine the Li+ storage characteristics, and density functional theory (DFT) was utilized to comprehend the underlying mechanism. When employed as the anode for LIBs, the NiO/NiSe2@C showed a high specific capacity and long-term cyclic stability, with a specific capacity of 992 mAh g−1 for 600 cycles at a current density of 0.2 A g−1. The NiO/NiSe2@C exhibits a significantly enhanced lithium-ion diffusion coefficient (DLi+) value. The DFT results show that an electron-rich area forms at the NiO/NiSe2 heterointerface, where the metalloid selenium transfers electrons to the oxygen atoms. The lithiation reactions were improved dramatically by redistributing interfacial charges, which can trigger a built-in electric field that dramatically promotes the capacitance contribution of electrode materials, enhances the lithium storage capacity, and accelerates the ion/electron transmission. The rational synthesis of NiO/NiSe2@C heterostructure can provide an idea for designing novel heterostructure anode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.