Abstract

Facile and selective 4e-/4H+ electrochemical reduction of O2 to H2O in aqueous medium has been a sought-after goal for several decades. Elegant but synthetically demanding cytochrome c oxidase mimics have demonstrated selective 4e-/4H+ electrochemical O2 reduction to H2O is possible with rate constants as fast as 105 M-1 s-1 under heterogeneous conditions in aqueous media. Over the past few years, in situ mechanistic investigations on iron porphyrin complexes adsorbed on electrodes have revealed that the rate and selectivity of this multielectron and multiproton process is governed by the reactivity of a ferric hydroperoxide intermediate. The barrier of O-O bond cleavage determines the overall rate of O2 reduction and the site of protonation determines the selectivity. In this report, a series of mononuclear iron porphyrin complexes are rationally designed to achieve efficient O-O bond activation and site-selective proton transfer to effect facile and selective electrochemical reduction of O2 to water. Indeed, these crystallographically characterized complexes accomplish facile and selective reduction of O2 with rate constants >107 M-1 s-1 while retaining >95% selectivity when adsorbed on electrode surfaces (EPG) in water. These oxygen reduction reaction rate constants are 2 orders of magnitude faster than all known heme/Cu complexes and these complexes retain >90% selectivity even under rate determining electron transfer conditions that generally can only be achieved by installing additional redox active groups in the catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.