Abstract

Crystalline and porous covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H2 evolution due to their long-range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two-dimensional (2D) COF with stable MOF. By covalently anchoring NH2 -UiO-66 onto the surface of TpPa-1-COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H2 evolution under visible light irradiation. Especially, NH2 -UiO-66/TpPa-1-COF (4:6) exhibits the maximum photocatalytic H2 evolution rate of 23.41 mmol g-1 h-1 (with the TOF of 402.36 h-1 ), which is approximately 20 times higher than that of the parent TpPa-1-COF and the best performance photocatalyst for H2 evolution among various MOF- and COF-based photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.