Abstract

Adults, infants and some non-human animals share an approximate number system (ANS) to estimate numerical quantities, and are supposed to share a second, ‘object-tracking,’ system (OTS) that supports the precise representation of a small number of items (up to 3 or 4). In relative numerosity judgments, accuracy depends on the ratio of the two numerosities (Weber’s Law) for numerosities >4 (the typical ANS range), while for numerosities ≤4 (OTS range) there is usually no ratio effect. However, recent studies have found evidence for ratio effects for small numerosities, challenging the idea that the OTS might be involved for small number discrimination. Here we tested the hypothesis that the lack of ratio effect in the numbers 1–4 is largely dependent on the type of stimulus presentation. We investigated relative numerosity judgments in college students using three different procedures: a simultaneous presentation of intermingled and separate groups of dots in separate experiments, and a further experiment with sequential presentation. As predicted, in the large number range, ratio dependence was observed in all tasks. By contrast, in the small number range, ratio insensitivity was found in one task (sequential presentation). In a fourth experiment, we showed that the presence of intermingled distractors elicited a ratio effect, while easily distinguishable distractors did not. As the different ratio sensitivity for small and large numbers has been often interpreted in terms of the activation of the OTS and ANS, our results suggest that numbers 1–4 may be represented by both numerical systems and that the experimental context, such as the presence/absence of task-irrelevant items in the visual field, would determine which system is activated.

Highlights

  • A large body of experimental evidence collected in cultural, developmental, comparative and cognitive psychology supports the existence of numerical systems that are not related to language and culture

  • Studies generally agree that numerical ratio affects discriminating large numerosities, they often disagree as to whether the same ratio dependence exists in the 1–4 numerical range

  • In the present study we tested the hypothesis that the presence/absence of ratio effect in the range 1–4 might be due to the type of stimulus presentation

Read more

Summary

Introduction

A large body of experimental evidence collected in cultural, developmental, comparative and cognitive psychology supports the existence of numerical systems that are not related to language and culture. Even after being trained for many years in formal mathematics, the adults of Western societies continue to use these abilities for solving many tasks of everyday life, such as estimating the number of people in a queue or number of food items in a plate. These abilities are supposed to be involved in laboratory studies in which participants are required to estimate which group is more numerous (e.g., 8 vs 9 dots) in a short amount of time (e.g., 200 ms), an experimental condition that makes extremely difficult the use of verbal counting (Halberda et al, 2008)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.