Abstract
We describe the deformation mechanisms and the bulk dynamic response of vertically aligned carbon nanotube (VACNT) foams comprised of bands of different densities. The densities of the bands are controlled during synthesis by varying the flow-rate of gas feedstock in discrete steps. We show that the impact response of VACNT foams can be distinctively tailored by introducing heterogeneous bands. For example, we demonstrate that this approach can be used to maintain the stress plateau at low stresses over a broad range of strains and to disrupt the expected progressive deformation of the sample. These are desirable characteristics for impact and energy absorption applications. The banded VACNT foams exhibit different deformation mechanisms in dynamics compared to those in quasistatic compression, as observed through in-situ high-speed microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.