Abstract

Desiccation tolerance (DT) in poikilohydric organisms is dependent upon four principal sequential factors, (1) the rate of drying (RoD), (2) the water content (WC) of the organism deriving from the equilibrating relative humidity (RHeq), (3) the duration of the desiccation event, and (4) the rate of rehydration (RoR). The first two factors are often combined in experiments as the “intensity” of desiccation, and thus the effect of one on the other is relatively unknown but likely to be important ecologically. We hypothesized that more protracted rates of drying should mitigate damage at lower equilibrating RHs in a known inducibly DT species. Cultured uniclonal shoots of the moss Funaria hygrometrica were dried at different RoDs (time from full turgor to leaf curling, from 0.067 to 120 h) at five different RHs (12, 33, 54, 75 and 93%), allowed to equilibrate at each RH, rehydrated and assessed using chlorophyll fluorescence at 0.5 and 24 h postrehydration. At 24 h postrehydration, shoots of F. hygrometrica subjected to a rapid-dry event (<10 min) were unable to recover to control levels of fluorescence (Fv/Fm and ΦPSII <80% of control levels) when equilibrated at RHeqs of ≤54%. Recovery was improved when the rate of drying was extended for more than ∼15 hours from full turgor to the onset of leaf curling at these RHeqs. When shoots were rapidly dried at RHeqs >54%, recovery was complete. At 0.5 h postrehydration, Fv/Fm levels indicated moderate damage at all RHeqs except 93%, with no mitigation of damage when the rate of drying was extended. Intensity of desiccation is normally construed as the ability to tolerate a combination of rate of drying × equilibrating RH. By varying the rate of drying across a range of RHeqs, F. hygrometrica is found to be able to tolerate all water contents tested, providing the rate of drying is extended to at least 15 h from full turgor to leaf curling. By adopting either the “step-down” approach to drying or the “wet substrate” technique used here, future studies on the desiccation tolerance of poikilohydric organisms can more accurately assess responses to desiccation stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.