Abstract

The kinetics of island nucleation and growth during deposition of Cu atoms on Cu(001) is studied using rate equations. The parameters in these equations are obtained using microscopic calculations of the energy landscape on the surface, previously used in Monte Carlo (MC) simulations. This allows a quantitative comparison between the rate equations and the MC results. Our rate equations take into account atoms that fall on the bare substrate as well as on top of existing islands, the mobility of single atoms and small islands, the coalescence of adjacent islands and the possible separation of atoms from island edges. The rate equations are used to explore the island size distribution and island density as a function of the coverage and deposition rates. These rate equations provide a useful and flexible tool that allows to easily modify particular microscopic properties of the system such as the mobility of small islands or the rate of coalescence and examine their effect while leaving all other features intact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.