Abstract
This study investigates rate-dependent crack nucleation in cartilage under microindentation using a poroviscoelastic framework and nano/microscopic images. Localized crack failure was induced at known locations and at different loading rates via microindentation with an axisymmetric sphero-conical indenter. Finite element (FE) modeling was used to reproduce results of microindentation tests within a poroviscoelastic framework. Scanning electron microscopy (SEM) was used to examine nano- and microscale structural features of crack surfaces. Microindentation results showed rate-dependent crack nucleation in cartilage. In particular, critical total work required for crack nucleation was larger at the slow loading rate compared to the fast loading rate. FE results suggested that viscoelastic relaxation of cartilage was a major contributor to the rate dependency and that tensile stresses localized at the indenter tip was a governing factor in crack nucleation. SEM images combined with microindentation and FE results suggested that the solid matrix in the vicinity of the tip experienced relatively large relaxation and kinematic fiber rearrangement at the slow loading rate in comparison to the fast loading rate. These findings extend current understanding of rate-dependent failure mechanisms in cartilage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.