Abstract

We describe a fast, efficient, and mild approach to prepare chemically reduced graphene oxide (rGO) at room temperature using divalent europium triflate {Eu(OTf)2}. The characterization of solution-processable reduced graphene oxide has been carried out by various spectroscopic (FT-IR, UV-visible absorption, and Raman), microscopic (TEM and AFM), and powder X-ray diffraction (XRD) techniques. Kinetic study indicates that the bimolecular rate constants for the reduction of graphene oxide are 13.7 ± 0.7 and 5.3 ± 0.1 M(-1) s(-1) in tetrahydrofuran (THF)-water and acetonitrile (ACN)-water mixtures, respectively. The reduction rate constants are two orders of magnitude higher compared to the values obtained in the case of commonly used reducing agents such as the hydrazine derivative, sodium borohydride, and a glucose-ammonia mixture. The present work introduces a feasible reduction process for preparing reduced graphene oxide at ambient conditions, which is important for bulk production of GO. More importantly, the study explores the possibilities of utilizing the unique chemistry of divalent lanthanide complexes for chemical modifications of graphene oxide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.