Abstract

Neural stem cells have become the focus of many studies as they have the potential to differentiate into all three neural lineages. This may be utilised to develop new and novel ways to treat neurological conditions such as spinal cord and brain injuries, especially if the stem cells can be modulated in vivo without additional invasive surgical procedures. This research is aimed at investigating the effects of the growth factors vascular endothelial growth factor, platelet-derived growth factor, brain-derived neurotrophic factor, and vascular endothelial growth factor/platelet-derived growth factor on hippocampal-derived neural stem cells. Cell growth and differentiation were assessed using immunohistochemistry and glutaminase enzyme assay. Cells were cultured for 14 days and treated with different growth factors at two different concentrations 20 ng/mL and 100 ng/mL. At 2 weeks, cells were fixed, and immunohistochemistry was conducted to determine cellular differentiation using antibodies against GFAP, nestin, OSP, and NF200. The cell medium supernatant was also collected during treatment to determine glutaminase levels secreted by the cells as an indicator of neural differentiation. VEGF/PDGF at 100 ng/mL had the greatest influence on cellular proliferation of HNSC, which also stained positively for nestin, OSP, and NF200. In comparison, HNSC in other treatments had poorer cell health and adhesion. HNSC in all treatment groups displayed some differentiation markers and morphology, but this is most significant in the 100 ng/ml VEGF/PDGF treatment. VEGF/PDGF combination produced the optimal effect on the HNSCs inducing the differentiation pathway exhibiting oligodendrocytic and neuronal markers. This is a promising finding that should be further investigated in the brain and spinal cord injury.

Highlights

  • It is well established that neurogenesis and gliogenesis occur in the adult nervous system [1], and in the past two decades, both neural progenitor cells (NPCs) and neural stem cells (NSCs) have been successfully isolated from the adult nervous system [2]

  • The cell numbers for all treatments except the platelet-derived growth factor (PDGF) 100 ng/mL and vascular endothelial growth factor (VEGF)/ PDGF 100 ng/mL were lower compared to the DMEM control (p < 0 001)

  • VEGF/PDGF. (d) hippocampal neural stem cells (HNSCs) cultured with base media and 100 ng/mL of VEGF/PDGF. (e) Negative staining control

Read more

Summary

Introduction

It is well established that neurogenesis and gliogenesis occur in the adult nervous system [1], and in the past two decades, both neural progenitor cells (NPCs) and neural stem cells (NSCs) have been successfully isolated from the adult nervous system [2]. It is well documented that NPCs are upregulated after spinal cord injury in animals and that they respond to injury by proliferating, differentiating, and migrating to the site of injury, assumedly assisting in repair [6,7,8]. These cells have become the focus of many studies as they are likely involved in the response to and an ideal therapeutic target in the development of therapies for neurological pathologies, such as spinal cord injury (SCI) and brain injury [2, 5, 9]. Platelet-derived growth factor (PDGF), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) have been identified as growth factors that could

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.