Abstract

AbstractElectrochemical splitting of water to produce hydrogen and oxygen is an important process for many energy storage and conversion devices. Developing efficient, durable, low‐cost, and earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is of great urgency. To achieve the rapid synthesis of transition‐metal nitride nanostructures and improve their electrocatalytic performance, a new strategy has been developed to convert cobalt oxide precursors into cobalt nitride nanowires through N2 radio frequency plasma treatment. This method requires significantly shorter reaction times (about 1 min) at room temperature compared to conventional high‐temperature NH3 annealing which requires a few hours. The plasma treatment significantly enhances the OER activity, as evidenced by a low overpotential of 290 mV to reach a current density of 10 mA cm−2, a small Tafel slope, and long‐term durability in an alkaline electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.