Abstract
AbstractThe climate-driven species pump hypothesis has been supported in a number of phylogeographic studies of alpine species. Climate-driven shifts in distribution, coupled with rapid demographic change, have led to strong genetic drift and lineage diversification. Although the species pump has been linked to rapid speciation in a number of studies, few studies have demonstrated that ecological divergence accompanies rapid speciation. Here we examine genetic, morphological and physiological variation in members of the ground beetle taxon Nippononebria, to test three competing hypotheses of evolutionary diversification: isolation and incomplete lineage sorting (no speciation), recent speciation without ecological divergence, or recent speciation with ecological divergence into alpine habitats. Genetic data are consistent with recent divergence, with major lineages forming in the last million years. A species tree analysis, in conjunction with morphological divergence in male reproductive traits, support the formation of three recognized Nippononebria taxa. Furthermore, both morphological and physiological traits demonstrate ecological divergence in alpine lineages, with convergent shifts in body shape and thermal tolerance breadth. This provides strong evidence that the climate-driven species pump can generate ecological novelty, though it is argued that spatial scale may be a key determinant of broader patterns of macroevolution in alpine communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.