Abstract

AbstractHighly aligned aggregation state structures have great significance for effective charge‐carrier transport in organic semiconductors. Several methods have been developed to provide organic semiconducting molecules with highly oriented aggregation state structure; among these, using a water surface to form organic semiconductor films is a widely implemented strategy, wherein solutions are spread on the surface of water. However, common techniques of film formation on water surfaces generally result in a nonuniform orientation of the film owing to the isotropic spread process of droplets on the water surface. In this study, a spatially confined air/water interfacial assembly method is proposed to obtain uniformly aligned monolayer and multilayer poly(diketopyrrolopyrrole‐thieno[3,2‐b]thiophene) thin films with controlled thickness. The structural and morphological characterizations obtained using atomic force microscopy, high‐resolution transmission electron microscopy, and grazing incidence wide‐angle X‐ray scattering indicates the crystalline structure of the thin films and high alignment of the molecular chains. The maximum mobility of the thin films reaches up to 2.06 and 0.5 cm2 V−1 s−1 in the parallel and perpendicular direction, respectively, indicating apparent anisotropic electrical properties. Furthermore, an inverter based on these thin films exhibits a voltage gain of up to 70, demonstrating the potential of applying the proposed technique to logic circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.