Abstract
Cerebral blood flow (CBF) and rate of oxygen metabolism (CMRO(2)) may be quantified using positron emission tomography (PET) with (15)O-tracers, but the conventional three-step technique requires a relatively long study period, attributed to the need for separate acquisition for each of (15)O(2), H(2)(15)O, and C(15)O tracers, which makes the multiple measurements at different physiologic conditions difficult. In this study, we present a novel, faster technique that provides a pixel-by-pixel calculation of CBF and CMRO(2) from a single PET acquisition with a sequential administration of (15)O(2) and H(2)(15)O. Experiments were performed on six anesthetized monkeys to validate this technique. The global CBF, oxygen extraction fraction (OEF), and CMRO(2) obtained by the present technique at rest were not significantly different from those obtained with three-step method. The global OEF (gOEF) also agreed with that determined by simultaneous arterio-sinus blood sampling (gOEF(A-V)) for a physiologically wide range when changing the arterial PaCO(2) (gOEF=1.03gOEF(A-V)+0.01, P<0.001). The regional values, as well as the image quality were identical between the present technique and three-step method for CBF, OEF, and CMRO(2). In addition, a simulation study showed that error sensitivity of the present technique to delay or dispersion of the input function, and the error in the partition coefficient was equivalent to that observed for three-step method. Error sensitivity to cerebral blood volume (CBV) was also identical to that in the three-step and reasonably small, suggesting that a single CBV assessment is sufficient for repeated measures of CBF/CMRO(2). These results show that this fast technique has an ability for accurate assessment of CBF/CMRO(2) and also allows multiple assessment at different physiologic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.