Abstract

BackgroundRecent advances in nanotechnology have led to the development of biocompatible nanoparticles for in vivo molecular imaging and targeted therapy. Many nanoparticles have undesirable tissue distribution or unacceptably low serum half-lives. Pharmacokinetic (PK) and biodistribution studies can help inform decisions determining particle size, coatings, or other features early in nanoparticle development. Unfortunately, these studies are rarely done in a timely fashion because many nanotechnology labs lack the resources and expertise to synthesize radioactive nanoparticles and evaluate them in mice.Methodology/Principal FindingsTo address this problem, we developed an economical, radioactivity-free method for assessing serum half-life and tissue distribution of nanoparticles in mice. Iron oxide nanoparticles coated with chitosan and polyethylene glycol that utilize chlorotoxin as a targeting molecule have a serum half-life of 7–8 hours and the particles remain stable for extended periods of time in physiologic fluids and in vivo. Nanoparticles preferentially distribute to spleen and liver, presumably due to reticuloendothelial uptake. Other organs have very low levels of nanoparticles, which is ideal for imaging most cancers in the future. No acute toxicity was attributed to the nanoparticles.Conclusions/SignificanceWe report here a simple near-infrared fluorescence based methodology to assess PK properties of nanoparticles in order to integrate pharmacokinetic data into early nanoparticle design and synthesis. The nanoparticles tested demonstrate properties that are excellent for future clinical imaging strategies and potentially suitable for targeted therapy.

Highlights

  • Nanomedicine, the application of nanotechnology in the practice of medicine, offers many advantages over conventional therapeutics

  • Serum Half-Life of Nanoparticles For assessment of serum half-life, we focused on a reproducible, quantitative assay that utilized the near infrared fluorophore (NIRF) dye, Cy5.5, which was incorporated into the nanoparticle

  • In the early stages of nanoparticle development, when decisions are being made about materials, coatings, synthetic processes and purification, key PK data can be generated in the same mice that are utilized to assess nanoparticle targeting to cancer cells or other targets

Read more

Summary

Introduction

Nanomedicine, the application of nanotechnology in the practice of medicine, offers many advantages over conventional therapeutics. Three emphasize the importance of studying the pharmacokinetics of nanotechnology-based therapeutics. These include evaluation of nanoparticle biodistribution following systemic injection, the study of transport across biological barriers, and the development of imaging modalities for tracking the fate of nanomedicine over time. Pharmacokinetic (PK) and biodistribution studies can help inform decisions determining particle size, coatings, or other features early in nanoparticle development. These studies are rarely done in a timely fashion because many nanotechnology labs lack the resources and expertise to synthesize radioactive nanoparticles and evaluate them in mice

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.