Abstract

To generate complex bilateral motor patterns such as those underlying birdsong, neural activity must be highly coordinated across the two cerebral hemispheres. However, it remains largely elusive how this coordination is achieved given that interhemispheric communication between song-control areas in the avian cerebrum is restricted to projections received from bilaterally connecting areas in the mid- and hindbrain. By electrically stimulating cerebral premotor areas in zebra finches, we find that behavioral effectiveness of stimulation rapidly switches between hemispheres. In time intervals in which stimulation in one hemisphere tends to distort songs, stimulation in the other hemisphere is mostly ineffective, revealing an idiosyncratic form of motor dominance that bounces back and forth between hemispheres like a virtual ping-pong ball. The intervals of lateralized effectiveness are broadly distributed and are unrelated to simple spectral and temporal song features. Such interhemispheric switching could be an important dynamical aspect of neural coordination that may have evolved from simpler pattern generator circuits.

Highlights

  • Owing to its complexity and high precision, birdsong has provided an important animal model for studies of motor control

  • The main cerebral brain areas for vocal production are the robust nucleus of the arcopallium (RA), HVC, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the latter of which forms the output of an avian basal-ganglia pathway [5]

  • As for all vertebrates, the songbird cerebrum has two halves, each of which controls mainly the muscles in one half of the body. Many motor behaviors such as singing rely on high coordination of activity in both hemispheres, yet little is known about the neural mechanisms of this coordination

Read more

Summary

Introduction

Owing to its complexity and high precision, birdsong has provided an important animal model for studies of motor control. The main cerebral brain areas for vocal production are the robust nucleus of the arcopallium (RA), HVC (used as a proper name), and the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the latter of which forms the output of an avian basal-ganglia pathway [5]. Song-related neural activity in premotor brain areas is precisely coordinated across hemispheres, because both hemispheres contribute to the production of one unique and highly stereotyped song. This precise coordination is illustrated by the strong synchronization of multiunit activity in left and right HVC during singing [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.