Abstract

Campylobacter is an organism of concern for food safety and is one of the leading causes of foodborne bacterial gastroenteritis. This pathogen can be found in broiler chickens, and the level of allowable contamination of processed poultry is regulated by federal agency guidelines. Traditional methods for detecting and isolating this pathogen from broiler chicken carcasses require time, expensive reagents, and artificially generated microaerophilic atmospheres. An aerobic medium that simplifies the procedure and reduces the expense of culturing Campylobacter has been recently described, and Campylobacter can be grown in this medium in containers that are incubated aerobically. Hyperspectral microscopic imaging (HMI) has been proposed for early and rapid detection of pathogens at the cellular level. The objective of the present study was to utilize HMI to compare differences between Campylobacter cultures grown under artificially produced microaerobic atmospheres and cultures grown in aerobic medium. Hyperspectral microscopic images of three Campylobacter strains were collected cultures grown for 48 h microaerophilically and for 24 and 48 h aerobically, and a quadratic discriminant analysis was used to characterize the bacterial variability. Microaerobically cultured bacteria were detected with 98.7% accuracy, whereas detection accuracy of cultures grown in the novel medium was slightly reduced (-4.8 and -3.2% for 24 and 48 h, respectfully). The Mahalanobis distance multivariate metric was applied to quantify strain variability under all three treatment conditions. Across all strains and treatments, little cluster variation was present (4.22 to 4.42), indicating the consistency of the images collected from the three strains. The classification and spectral consistency was similar for cultures incubated in the aerobic medium for 24 h and cultures grown for 48 h under microaerobic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.