Abstract

Hysteresis is a frequently observed phenomenon in the transfer characteristics of thin film transistors. Charge trapping/de-trapping processes of gate oxide and gate-channel interface are commonly known to be the origin of hysteresis and correlated to low frequency noise (LFN) properties of the devices. In this letter, a rapid four-point sweeping method (RFSM) is proposed to reveal the dependence of hysteresis, as well as the distribution of effective trap density on sweeping rate and gate bias range. Based on the RFSM, the hysteresis properties of four-layer MoS2 FETs are studied in detail. The experimental results demonstrate that the hysteresis and trap density at different frequencies and gate voltages, which could further roughly map the traps with different time constants and energy depths, can be obtained by the simple RFSM. Trap density estimated by RFSM shows a comparable range with that extracted from LFN, indicating that the traps inducing the hysteresis may also cause LFN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.