Abstract

Binary asteroid formation is a highly complex process, which has been highlighted with recent observations of satellites with unexpected shapes, such as the oblate Dimorphos by the NASA DART mission and the contact binary Selam by NASA’s Lucy mission. There is no clear consensus on which dynamical mechanisms determine the final shape of these objects. In turn, we explore a formation pathway where spin-up and rotational failure of a rubble pile asteroid lead to mass-shedding and a wide circumasteroidal debris disk in which the satellite forms. Using a combination of smooth-particle hydrodynamical and N-body simulations, we study the dynamical evolution in detail. We find that a debris disk containing matter corresponding to a few percent of the primary asteroid mass extending beyond the fluid Roche limit can consistently form both oblate and bilobate satellites via a series of tidal encounters with the primary body and mergers with other gravitational aggregates. Principally, satellites end up prolate (elongated) and on synchronous orbits, accreting mainly in a radial direction while tides from the primary asteroid keep the shape intact. However, close encounters and mergers can break the orbital state, leading to orbital migration and deformation. Satellite–satellite impacts occurring in this regime have lower impact velocities than merger-driven moon formation in e.g. planetary rings, leading to soft impacts between differently sized, non-spherical bodies. The resulting post-merger shape of the satellite is highly dependent on the impact geometry. Only moons having experienced a prior mild or catastrophic tidal disruption during a close encounter with the primary asteroid can become oblate spheroids, which is consistent with the predominantly prolate observed population of binary asteroid satellites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.