Abstract

The dynamics of postsynaptic density (PSD) formation and remodeling were investigated in live developing hippocampal tissue slices. Time lapse imaging of transfected neurons expressing GFP-tagged PSD95, a prominent PSD protein, revealed that up to 40% of PSDs in developing dendrites are structurally dynamic; they rapidly (<15 min) appear or disappear, but also grow, shrink and move within shafts and spines. New spines containing PSDs were formed by conversion of dynamic filopodia-like spine precursors in which PSDs appeared de novo, or by direct extension of spines or spine precursors carrying preformed PSDs from the shaft. PSDs are therefore highly dynamic structures that can undergo rapid structural alteration within dendrite shafts, spines and spine precursors, permitting rapid formation and remodeling of synaptic connections in developing CNS tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.