Abstract
The transbilayer movement (flip-flop) of 7-nitrobenz-2-oxa-1,3-diazol-4-yl phosphatidylethanolamine (NBD-PE) in phosphatidylcholine (PC) membranes containing various acyl chains was measured by dithionite quenching of NBD fluorescence. Of specific interest was docosahexaenoic acid (DHA), the longest and most unsaturated acyl chain commonly found in membranes. This molecule represents the extreme example of a family of important fatty acids known as omega-3s and has been clearly demonstrated to alter membrane structure and function. One important property that has yet to be reported is the effect of DHA on membrane phospholipid flip-flop. This study demonstrates that as the number of double bonds in the fatty acyl chains comprising the membrane increases, so does the rate of flip-flop of the NBD-PE probe. The increase is particularly marked in the presence of DHA. Half-lives t 1/2 of 0.29 and 0.086 h describe the process in 1-stearoyl-2-docosahexaenoylphosphatidylcholine and 1,2-didocosahexaenoylphosphatidylcholine, respectively, whereas in 1-stearoyl-2-oleoylphosphatidylcholine t 1/2=11.5 h . Enhanced permeability to dithionite with increasing unsaturation was also indicated by our results. We conclude that PC membranes containing DHA support faster flip-flop and permeability rates than those measured for other less-unsaturated PCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.