Abstract
A porphyrinic metal-organic framework (PMOF) known as PCN-222(Zn) was chemically doped with a molecular Re(I) catalyst-bearing carboxylate anchoring group to form a new type of metal-organic framework (MOF)-Re(I) hybrid photocatalyst. The porphyrinic MOF-sensitized hybrid (PMOF/Re) was prepared with an archetypical CO2 reduction catalyst, (L)ReI(CO)3Cl (Re(I); L = 4,4'-dicarboxylic-2,2'-bipyridine), in the presence of 3 vol % water produced CO with no leveling-off tendency for 59 h to give a turnover number of ≥1893 [1070 ± 80 μmol h-1 (g MOF)-1]. The high catalytic activity arises mainly from efficient exciton migration and funneling from photoexcited porphyrin linkers to the peripheral Re(I) catalytic sites, which is in accordance with the observed fast exciton (energy) migration (≈1 ps) in highly ordered porphyrin photoreceptors and the effective funneling into Re(I) catalytic centers in the Re(I)-doped PMOF sample. Enhanced catalytic performance is convincingly supported by serial photophysical measurements including decisive Stern-Volmer interpretation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.