Abstract

Echinococcosis is a severe zoonotic parasitic disease, and it is continuing to be a significant public health issue. The course of the disease is usually slow, and patients often remain asymptomatic for years. There is no standardized and widely accepted treatment, so early and accurate diagnosis is essential. Herein, this study utilized vibrational spectroscopic techniques, namely Raman and Fourier Transform Infrared (FTIR) spectroscopy, to quickly and accurately distinguish hepatic echinococcosis (HE) patients’ serum from the healthy group. Serum samples were collected from HE patients as well as healthy control subjects, and then the Raman and FTIR spectra of the two groups were recorded. After a series of pre-processing, support vector machines (SVMs) were then used to establish the classification models for the two spectral data sets. The performance of each diagnostic model was evaluated using leave-one-out cross-validation (LOOCV) and hold-out validation methods, respectively. For the distinction between HE and healthy groups, these two spectroscopic techniques had achieved satisfactory classification results, and the diagnostic capabilities of the Raman technique were comparable to that of the FTIR method. The results demonstrate that vibrational spectroscopy has great potential in the rapid and accurate detection of HE and is expected to make up for the shortcomings of the existing clinical diagnosis methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.