Abstract

During focal cerebral ischemia, the microvascular matrix (ECM), which participates in microvascular integrity, is degraded and lost when neurons are injured. Loss of microvascular basal lamina antigens coincides with rapid expression of select matrix metalloproteinases (MMPs). Plasminogen activators (PAs) may also play a role in ECM degradation by the generation of plasmin or by MMP activation. The endogenous expressions of tissue-type plasminogen activator (tPA), urokinase (uPA), and PA inhibitor-1 (PAI-1) were quantified in 10-microm frozen sections from ischemic and matched nonischemic basal ganglia and in the plasma of 34 male healthy nonhuman primates before and after middle cerebral artery occlusion (MCA:O). Within the ischemic basal ganglia, tissue uPA activity and antigen increased significantly within 1 hour after MCA:O (2P<0.005). tPA activity transiently decreased 2 hours after MCA:O (2P=0.01) in concert with an increase in PAI-1 antigen (2P=0.001) but otherwise did not change. The transient decrease in free tPA antigen was marked by an increase in the tPA-PAI-1 complex (2P<0.001). No significant relations to neuronal injury or intracerebral hemorrhage were discerned. The rapid increase in endogenous PA activity is mainly due to significant increases in uPA, but not tPA, within the ischemic basal ganglia after MCA:O. This increase and an increase in PAI-1 coincided with latent MMP-2 generation and microvascular ECM degeneration but not neuronal injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.