Abstract
The surface of regenerated cellulose membranes was modified by irreversible adsorption of carboxymethylcellulose (CMC). Pairs of wet CMC-modified membranes were laminated with polyvinylamine (PVAm) at room temperature, and the delamination force for wet membranes was measured for both dried and never-dried laminates. The wet adhesion was studied as a function of PVAm molecular weight, amine content, and deposition pH of the polyelectrolyte. Surprisingly the PVAm-CMC system gave substantial wet adhesion that exceeded that of TEMPO-oxidized membranes with PVAm for both dried and never-dried laminates. The greatest wet adhesion was achieved for fully hydrolyzed high molecular weight PVAm. Bulk carboxymethylation of cellulose membranes gave inferior wet adhesion combined with PVAm as compared to CMC adsorption which indicates that a CMC layer of the order of 10 nm was necessary. There are no obvious covalent cross-linking reactions between CMC and PVAm at room temperature, and on the basis of our results, we are instead attributing the wet adhesion to complex formation between the PVAm and the irreversibly adsorbed CMC at the cellulose surface. We propose that interdigitation of PVAm chains into the CMC layer is responsible for the high wet adhesion values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.