Abstract
Near-infrared spectroscopy (NIRS) is an efficient method for detecting the content of carbon and nitrogen in many materials, which solves the problems of the time-consuming and high-cost traditional chemical analysis method. To quickly detect the carbon-nitrogen ratio (C/N) for the anaerobic fermentation (AF) feedstock using NIRS, a genetic simulated annealing algorithm (GSA) is presented based on a genetic algorithm combined with a simulated annealing algorithm. By combining GSA with backward interval partial least squares (BiPLS), we construct a BiPLS-GSA algorithm to optimize the characteristic wavelength variables of NIRS; this algorithm significantly reduced the number of wavelength variables involved in modeling and effectively improved the detection accuracy and efficiency of the model. The determination coefficients, root mean squared error, mean relative error (MRE) and residual predictive deviation for the validation set in the BiPLS-GSA regression model were 0.9067, 7.6676, 5.5274%, and 3.5626, respectively. Meanwhile, compared to the entire spectrum model, the MRE was decreased by 16.54% in the BiPLS-GSA-based model. The research in this paper improves the adaptability of the prediction model based on optimizing sensitive wavelength variables for C/N, which provides a new way for rapid and accurate measurement of the C/N of AF feedstock.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.