Abstract

Atomically precise metal nanoclusters capped with small molecules like amino acids are highly favored due to their specific interactions and easy incorporation into biological systems. However, they are rarely explored due to the challenge of surface functionalization of nanoclusters with small molecules. Herein, we report the synthesis of a green-emitting (λex = 380 nm, λem = 500 nm), single-amino-acid (l-tryptophan)-scaffolded copper nanocluster (Trp-Cu NC) via a one-pot route under mild reaction conditions. The synthesized nanocluster can be used for the rapid detection of a heavy metal, silver (Ag(I)), in the nanomolar concentration range in real environmental and biological samples. The strong green photoluminescence intensity of the nanocluster quenched significantly upon the addition of Ag(I) due to the formation of bigger nanoparticles, thereby losing its energy quantization. A notable color change from light yellow to reddish-brown can also be observed in the presence of Ag(I), allowing its visual colorimetric detection. Portable paper strips fabricated with the Trp-Cu NC can be reliably used for on-site visual detection of Ag(I) in the micromolar concentration range. The Trp-Cu NC possesses excellent biocompatibility, making it a suitable nanoprobe for cell imaging; thus, it can act as an in vivo biomarker. The nanocluster showed a significant spectral overlap with anticancer drug doxorubicin and thus can be used as an effective fluorescence resonance energy transfer (FRET) pair. FRET results can reveal important information regarding the attachment of the drug to the nanocluster and hence its role as a potential drug carrier for targeted drug delivery within the human body.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.