Abstract

Condition monitoring systems of manufacturing processes have been recognised in recent years as one of the key technologies that provide the competitive advantage in many manufacturing environments. It is capable of providing an essential means to reduce cost, increase productivity, improve quality and prevent damage to the machine or workpiece. Turning operations are considered one of the most common manufacturing processes in industry. It is used to manufacture different round objects such as shafts, spindles and pins. Despite recent development and intensive engineering research, the development of tool wear monitoring systems in turning is still ongoing challenge. In this paper, force signals are used for monitoring tool-wear in a feature fusion model. A novel approach for the design of condition monitoring systems for turning operations using novelty detection algorithm is presented. The results found prove that the developed system can be used for rapid design of condition monitoring systems for turning operations to predict tool-wear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.