Abstract

Rapid dendritic growth of γ-(Ni, Fe) phase, β-CoSb intermetallic compound and α-Fe phase was realized by undercooling Ni-10%Fe single phase alloy, Co-60.5%Sb intermetallic alloy and Fe-40%Sn hypomonotectic alloy to a substantial extent. Their experimentally measured dendrite growth velocities were 79.5m/s, 12m/s and 0.705m/s, corresponding to undercooling levels of 303K(0.18TL), 168K(0.11 TL) and 219K(0.15 TL) respectively. Since the usual dendrite growth theory deviates significantly from reality at great undercoolings, an artificial neural network incorporated with stochastic fuzzy control was developed to explore rapid dendrite growth kinetics. It leads to the reasonable prediction that dendritic growth always exhibits a maximum velocity at a certain undercooling, beyond which dendrite growth slows down as undercooling increases still further. In the case of Fe-Sn monotectic alloys, α-Fe dendrite growth velocity was found to depend mainly on undercooling rather than alloy composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.