Abstract

Using time-domain density functional theory combined with nonadiabatic molecular dynamics, we have investigated the effect of light-induced lattice expansion on the nonradiative electron-hole recombination in the mixed-cation perovskite FA0.75MA0.25PbI3. We demonstrate that charge carrier lifetime extends by a factor of 1.5 within 1% lattice expansion; the bandgap grows only by 0.04 eV; the electron-phonon coupling increases by 13%; and the decoherence time shortens by 37%. The small bandgap change has negligible influence on recombination times. Lattice expansion enhances atomic fluctuations that lead to the enhancement of electron-phonon coupling and acceleration of decoherence. By creating several high-frequency phonon modes, the lattice expansion shortens the decoherence time further. As a result, rapid decoherence beats an enhanced electron-phonon coupling, playing the dominant role in suppressing the nonradiative electron-hole recombination. The light-induced lattice expansion or strain effects provide a rational route to improve the perovskite photovoltaic and photoelectronic device performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.