Abstract
Rapid and reversible binding of sulfide to [NiFe]-hydrogenases (particularly the enzyme from Desulfovibrio vulgaris) under weakly acidic conditions (pH 6) has been studied by protein film voltammetry, which tracks the formation of different species as a function of potential. Sulfide (most likely entering as H2S) rapidly attacks the active site during H2 oxidation. The inactive adduct is formed (and is stable) only at potentials substantially more positive than the comparable species formed with oxygen species and is easily reactivated upon reduction. The sulfide adduct also reacts further with O2 to produce a new species that undergoes reductive activation very slowly. The results clarify complex and controversial chemistry reported in the literature and provide insight into how these enzymes would cope with sulfide production in sulfate-reducing bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.