Abstract

Here we describe an approach to genotyping D. nodosus, based on variation in the fimbrial subunit gene ( fimA), which uses polymerase chain reaction (PCR) amplification and hybridisation to immobilised oligonucleotides (PCR/oligotyping). The variable region of D. nodosus fimA, amplified and labelled with digoxigenin (DIG) in a single multiplex PCR amplification, was hybridised to a panel of group- and type-specific poly-dT tailed oligonucleotides that were immobilised on a nylon membrane strip. A mixture of positive control poly-dT tailed oligonucleotides was also included on the membrane. After hybridisation the membrane was washed to a defined specificity, and DIG-labelled fragments hybridising were detected with nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (SCIP). The specificity of the oligonucleotides was verified by the lack of cross-reactivity with D. nodosus fimA sequences that had a single base difference. DNA from 14 footrot samples previously genotyped by PCR-SSCP/sequencing [Vet. Microbiol. 71 (2000) 113], was assayed using the PCR/oligotyping technique. All types of D. nodosus which had been detected previously with a PCR-SSCP/sequencing method were detected by this procedure. However, for three of the 14 footrot samples, PCR/oligotyping detected additional types of D. nodosus. Further PCR amplification using type-specific primers, confirmed that these types of the bacterium were present in the footrot samples. These results indicate that PCR/oligotyping is a specific, accurate, and useful tool for typing footrot samples. In combination with a rapid DNA extraction protocol, D. nodosus strains present in a footrot sample can be accurately identified in less than 2 days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.