Abstract

The increasing prevalence of SARS-CoV-2 variants with spike mutations has raised concerns owing to higher transmission rates, disease severity, and escape from neutralizing antibodies. Rapid and accurate detection of SARS-CoV-2 variants provides crucial information concerning the outbreaks of SARS-CoV-2 variants and possible lines of transmission. This information is vital for infection prevention and control. We used a Cas12a-based RT-PCR combined with CRISPR on-site rapid detection system (RT-CORDS) platform to detect the key mutations in SARS-CoV-2 variants, such as 69/70 deletion, N501Y, and D614G. We used type-specific CRISPR RNAs (crRNAs) to identify wild-type (crRNA-W) and mutant (crRNA-M) sequences of SARS-CoV-2. We successfully differentiated mutant variants from wild-type SARS-CoV-2 with a sensitivity of 10−17 M (approximately 6 copies/μL). The assay took just 10 min with the Cas12a/crRNA reaction after a simple RT-PCR using a fluorescence reporting system. In addition, a sensitivity of 10−16 M could be achieved when lateral flow strips were used as readouts. The accuracy of RT-CORDS for SARS-CoV-2 variant detection was 100% consistent with the sequencing data. In conclusion, using the RT-CORDS platform, we accurately, sensitively, specifically, and rapidly detected SARS-CoV-2 variants. This method may be used in clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.