Abstract
In mammalian, several evidences suggest that central serotonin participates in thermoregulation. Nucleus raphe obscurus (NRO), a serotonergic nucleus, has been recognized to be the source of generation of various hemodynamic patterns in different behavioral conditions, but its involvement in thermoregulation is unclear. In the present study, extracellular action potentials of NRO neurons were recorded in anesthetized rats, which were submitted to cold and warm stimuli in the tail. The firing rate of the neurons was compared before and after each stimulation. It was found that 59% of the neurons submitted to a cold stimulus trial had a significant increase in their firing frequency, while 48% of the neurons submitted to warm stimulation trial were inhibited. The opposite responses in neuronal activity of NRO units to cooling or heating suggest that these cells are involved in producing the homoeothermic vascular adaptations secondary to changes in cutaneous temperature in the rat tail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.