Abstract
Rare class problems are common in real-world applications across a wide range of domains. Standard classification algorithms are known to perform poorly in these cases, since they focus on overall classification accuracy. In addition, we have seen a significant increase of data in recent years, resulting in many large scale rare class problems. In this paper, we focus on nonlinear kernel based classification methods expressed as a regularized loss minimization problem. We address the challenges associated with both rare class problems and large scale learning, by 1) optimizing area under curve of the receiver of operator characteristic in the training process, instead of classification accuracy and 2) using a rare class kernel representation to achieve an efficient time and space algorithm. We call the algorithm RankRC. We provide justifications for the rare class representation and experimentally illustrate the effectiveness of RankRC in test performance, computational complexity, and model robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.