Abstract
Schema matching is a basic operation of data integration, and several tools for automating it have been proposed and evaluated in the database community. Research in this area reveals that there is no single schema matcher that is guaranteed to succeed in finding a good mapping for all possible domains and, thus, an ensemble of schema matchers should be considered. In this paper, we introduce schema metamatching, a general framework for composing an arbitrary ensemble of schema matchers and generating a list of best ranked schema mappings. Informally, schema metamatching stands for computing a "consensus" ranking of alternative mappings between two schemata, given the "individual" graded rankings provided by several schema matchers. We introduce several algorithms for this problem, varying from adaptations of some standard techniques for general quantitative rank aggregation to novel techniques specific to the problem of schema matching, and to combinations of both. We provide a formal analysis of the applicability and relative performance of these algorithms and evaluate them empirically on a set of real-world schemata
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.