Abstract

A methodology to design the range policy of adaptive cruise control vehicles and its companion servoloop control algorithm is presented in this paper. A nonlinear range policy for improved traffic flow stability and string stability is proposed and its performance is compared against the constant time headway policy, the range policy employed by human drivers, and the Greenshields policy. The proposed range policy is obtained through an optimization procedure with traffic flow and stability constraints. A complementary controller is then designed based on the sliding mode technique. Microscopic simulation results show that stable traffic flow is achieved by the proposed method up to a significantly higher traffic density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.