Abstract

Kernel ridge regression (KRR) is a standard method for performing nonparametric regression over reproducing kernel Hilbert spaces. Given $n$ samples, the time and space complexity of computing the KRR estimate scale as $\mathcal{O}(n^{3})$ and $\mathcal{O}(n^{2})$, respectively, and so is prohibitive in many cases. We propose approximations of KRR based on $m$-dimensional randomized sketches of the kernel matrix, and study how small the projection dimension $m$ can be chosen while still preserving minimax optimality of the approximate KRR estimate. For various classes of randomized sketches, including those based on Gaussian and randomized Hadamard matrices, we prove that it suffices to choose the sketch dimension $m$ proportional to the statistical dimension (modulo logarithmic factors). Thus, we obtain fast and minimax optimal approximations to the KRR estimate for nonparametric regression. In doing so, we prove a novel lower bound on the minimax risk of kernel regression in terms of the localized Rademacher complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.