Abstract

This paper proposes novel randomized gossip‐consensus‐based sync (RGCS) algorithms to realize efficient time calibration in dynamic wireless sensor networks (WSNs). First, the unreliable links are described by stochastic connections, reflecting the characteristic of changing connectivity gleaned from dynamic WSNs. Secondly, based on the mutual drift estimation, each pair of activated nodes fully adjusts clock rate and offset to achieve network‐wide time synchronization by drawing upon the gossip consensus approach. The converge‐to‐max criterion is introduced to achieve a much faster convergence speed. The theoretical results on the probabilistic synchronization performance of the RGCS are presented. Thirdly, a Revised‐RGCS is developed to counteract the negative impact of bounded delays, because the uncertain delays are always present in practice and would lead to a large deterioration of algorithm performances. Finally, extensive simulations are performed on the MATLAB and OMNeT++ platform for performance evaluation. Simulation results demonstrate that the proposed algorithms are not only efficient for synchronization issues required for dynamic topology changes but also give a better performance in terms of converging speed, collision rate, and the robustness of resisting delay, and outperform other existing protocols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.