Abstract

In a randomized clinical trial, response-adaptive randomization procedures use the information gathered, including the previous patients' responses, to allocate the next patient. In this setting, we consider randomization-based inference. We provide an algorithm to obtain exact p-values for statistical tests that compare two treatments with dichotomous responses. This algorithm can be applied to a family of response adaptive randomization procedures which share the following property: the distribution of the allocation rule depends only on the imbalance between treatments and on the imbalance between successes for treatments 1 and 2 in the previous step. This family includes some outstanding response adaptive randomization procedures. We study a randomization test to contrast the null hypothesis of equivalence of treatments and we show that this test has a similar performance to that of its parametric counterpart. Besides, we study the effect of a covariate in the inferential process. First, we obtain a parametric test, constructed assuming a logit model which relates responses to treatments and covariate levels, and we give conditions that guarantee its asymptotic normality. Finally, we show that the randomization test, which is free of model specification, performs as well as the parametric test that takes the covariate into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.