Abstract

Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.

Highlights

  • In mammals, dosage compensation of X-linked gene products between XX females and XY males is achieved by the transcriptional inactivation of all but one X chromosome per diploid cell in females early in embryogenesis

  • Imprinted X chromosome inactivation (XCI) is found in Eutherians like mice, rats [3,4,5] and, less extensively characterized, bovines [6], exclusively in extraembryonic tissues

  • The process of XCI has been best studied in the mouse, where it has been shown to be triggered by expression in cis of the noncoding Xist gene exclusively from the future inactive X (Xi), and to occur in two waves in the female pre-implantation embryo

Read more

Summary

Introduction

Dosage compensation of X-linked gene products between XX females and XY males is achieved by the transcriptional inactivation of all but one X chromosome per diploid cell in females early in embryogenesis. The process of XCI has been best studied in the mouse, where it has been shown to be triggered by expression in cis of the noncoding Xist gene exclusively from the future inactive X (Xi), and to occur in two waves in the female pre-implantation embryo (reviewed in [7]). Imprinted XCI becomes evident as early as in the 4-cell stage [8,9,10], where expression of Xist exclusively from the paternal X (Xp) results in its inactivation. Cells from the epiblast reactivate the paternal Xi , and go through a second round of XCI, this time randomly choosing the paternal or the maternal X as the inactive one [9,11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.