Abstract

We study kinetic transport through one-dimensional modular networks consisting of alternating domains using both analytical and numerical methods. We demonstrate that the mean velocity is insensitive to the local structure of the network, and it depends only on global, structural-averaged properties. However, by examining high-order cumulants characterizing the kinetics, we reveal information on the degree of inhomogeneity of blocks and the size of repeating units in the network. Specifically, in unbiased diffusion, the kurtosis is the first transport coefficient that exposes structural information, whereas in biased chains, the diffusion coefficient already reveals structural motifs. Nevertheless, this latter dependence is weak, and it disappears at both low and high biasing. Our study demonstrates that high-order moments of the population distribution over sites provide information about the network structure that is not captured by the first moment (mean velocity) alone. These results are useful towards deciphering mechanisms and determining architectures underlying long-range charge transport in biomolecules and biological and chemical reaction networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.