Abstract

Strongly regular graphs lie on the cusp between highly structured and unstructured. For example, there is a unique strongly regular graph with parameters (36,10,4,2), but there are 32548 non-isomorphic graphs with parameters (36,15,6,6). (The first assertion is a special case of a theorem of Shrikhande, while the second is the result of a computer search by McKay and Spence.) In the light of this, it will be difficult to develop a theory of random strongly regular graphs! For certain values of the parameters, we have at least one prerequisite for a theory of random objects: there should be very many of them (e.g. superexponentially many). Two other features we would like are a method to sample from the uniform distribution (this is known in a couple of special cases) and information about how various graph parameters behave as random variables on the uniform distribution. Very little is known but there are a few recent results and some interesting problems. This paper develops no general theory, but explores a few examples and techniques which can be applied in some cases. Thomason has developed a theory of “pseudo-random graphs” which he calls ( p, α)-jumbled graphs. Some of these graphs are strongly regular, but they are very special strongly regular graphs. I conclude with some speculation about “random jumbled graphs”.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.