Abstract

Particle stacking simulation is applied in the fabrication of porous hydroxyapatite (HA) ceramics to predict the relationship between the template preparation process and the porosity of porous ceramics. The stacking of multi-diameter spherical particles, such as polymer spheres and NaCl particles, in three-dimensional space is simulated by using continuous generation method. The porosity of porous HA is predicted by calculating the stacking density of large spheres (the ratio of large sphere volume and container volume). The model of three-dimensional random stacking spheres is implemented by using the C++ program. Porous HA ceramics with interconnected spherical pores were fabricated by slipcasting which the use of a polymer template. Templates were produced by randomly stacking polymer spheres and NaCl particles. The arithmetic average error between the porosity of porous HA ceramics and the stacking density of polymer spheres (large spheres) is 3.52%. Simulation results obtained by using the proposed method are consistent with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.